Curcumin Extreme™薑黃精華─補肝排毒配方
/
/
/
Curcumin Extreme™薑黃精華─補肝排毒配方

Curcumin Extreme™薑黃精華─補肝排毒配方

$392.00

單瓶裝 (30 份)

Curcumin Extreme薑黃精華─補肝排毒配方可促進多種生物功能,包括整體肝臟健康與正常排毒酵素的生成,有助清除體內長期累積的毒素等。Curcumin Extreme薑黃精華─補肝排毒配方亦能促進整體的細胞完整、認知健康,並維持健康的穀胱甘肽水平。穀胱甘肽是人體内的重要抗氧化物,能夠保護肝臟、大腦和其他身體組織免受自由基的侵害。而且,穀胱甘肽還可支援另外兩種強效抗氧化物,即維他命C與維他命E。

- +
Add to WishlistAdd to Compare

益處

  • 促進核因子活化B細胞κ輕鏈增強子的正常活性
  • 支援肝臟正常排毒功能
  • 支援整體的肝臟健康
  • 促進不良細胞的自然凋亡
  • 促進正常的細胞循環活動
  • 有助維持整體細胞完整
  • 促進正常的細胞再生
  • 有助維持健康的穀胱甘肽水平
  • 支援正常的穀胱甘肽合成
  • 促進正常排毒酵素的生成
  • 隨年齡增長,有助維持神經系統與認知健康
  • 促進正常的免疫細胞與大腦(神經細胞)之間的相互作用,以維持認知健康
  • 保護神經細胞免受自由基侵害
  • 強效的抗氧化物,保護人體免受自由基的侵害。
  • 強健免疫系統

產品分類

不含麩質 – 本產品不含可檢測出之麩質*

品質標準 – 良好生產規範(GMP)運作與標準化成份

已檢測:重金屬丶微生物污染物丶過敏原丶效力丶純度及特性

*美國食品藥品監督管理局(FDA)將含有少於20PPM麩質的製成產品列為不含麩質

詳細資料

Heart Health魚油(含維他命E)是一項品質優良的產品。此產品只採用最優質的魚類,潔淨安全,並含有豐富二十碳五烯酸(EPA)及二十二碳六烯酸(DHA)。Heart Health魚油以較細小的魚類製成,其他競爭產品則多使用較易積聚毒素的大魚。Heart Health魚油是一項優質、高純度的產品,含豐富促進健康的EPA及DHA。

Heart Health魚油(含維他命E)所含的魚油來自秘魯海岸捕獲的鯷魚和沙甸魚。鯷魚和沙甸魚含有高水平的奧米加3,而且這些奧米加3含有極高比例的EPA和DHA。鯷魚和沙甸魚生命週期較短,較少機會積聚環境毒素,因此是優質的魚油來源;相反,較大型、長壽的魚類較易積聚毒素。一般來說,鯷魚和沙甸魚在進行淨化過程前的污染物含量已經很低。每一批魚油經我們的製造商加工前均會通過測試,並必須於生產過程通過質量檢查。

近期研究顯示,魚油或有助支援認知功能。《美國臨床營養學雜誌》刊載的文章指,補充魚油顯示對健康認知和心臟功能有益。研究顯示,每天補充魚油可快速提升心臟組織的EPA和DHA水平。此外,研究顯示DHA有助維持血液循環。臨床研究顯示,魚油提供許多好處,這些好處有效促進心血管健康。

進食加工、高卡路里及高脂食品等不健康飲食習慣、污染、吸煙和缺乏運動,均會導致心臟健康欠佳。不吸煙、維持健康體重、維持含豐富蔬果和全穀類的飲食、定時運動和使用適當的補充品,均有助促進良好心血管健康。臨床測試顯示,補充奧米加3(於魚油中找到)或支援心血管健康及血液循環。

Heart Health魚油(含維他命E)採用的魚油經兩次測試,第一次由製造商進行,第二次由獨立檢測公司進行,以測試產品的水銀、鉛、多氯聯苯(PCB)及其他重金屬含量。兩次測試均證實Heart Health魚油不含水銀、鉛、多氯聯苯(PCB)及其他重金屬。我們只採用符合或高於加拿大(CFIA)、歐盟(EU)和美國(CRN)標準的魚油製造產品。

Curcumin Extreme薑黃精華─補肝排毒配方可促進多種生物功能,包括整體肝臟健康與正常排毒酵素的生成,有助清除體內長期累積的毒素等。Curcumin Extreme薑黃精華─補肝排毒配方亦能促進整體的細胞完整、認知健康,並維持健康的穀胱甘肽水平。穀胱甘肽是人體内的重要抗氧化物,能夠保護肝臟、大腦和其他身體組織免受自由基的侵害。而且,穀胱甘肽還可支援另外兩種強效抗氧化物,即維他命C與維他命E。

Curcumin Extreme薑黃精華─補肝排毒配方包含經廣泛研究的專利成分 —Curcugreen™†。科學家早已注意到印度香料薑黃(Curcuma longa)具有多種健康益處。薑黃是植物化學物質薑黃素的來源。一般來說,大多數薑黃萃取物的生物可利用性較差(不易被吸收),通常需要食用較多份量或靠增強劑來加強吸收效果。與市面上的絕大多數薑黃素產品不同,Curcumin Extreme薑黃精華─補肝排毒配方中的Curcugreen†™可提供極佳的生物可利用性,從而使身體有效地獲取最大益處。

Curcugreen安全可靠,不含任何人工合成增強劑。1 它亦會輸送大量具生物活性的薑黃素到血液中,發揮極高的生物可利用性。與市面上許多其他產品不同,Curcugreen 是一種薑黃萃取物,含有類薑黃素與薑黃油混合物專利配方。1薑黃中的芳薑黃酮±複合物可支援Curcugreen 中薑黃萃取物的生物活性與吸收性,而不會破壞產品的完整性。1

Curcumin Extreme薑黃精華─補肝排毒配方還含有西蘭花籽萃取物,它是豐富的蘿蔔硫素硫配糖體來源。蘿蔔硫素支援第二階段肝臟排毒酵素的正常分泌,包括穀胱甘肽合成酵素、血紅素氧化酵素和過氧化氫酵素。穀胱甘肽被認為是人體内的重要抗氧化物,保護大腦和其他身體組織免受自由基的侵害。

本產品不含以下常見過敏原:麩質、大豆、小麥、奶製品。

†Curcugreen™是Arjuna Natural Ltd.的註冊商標。CurcuGreen™ 前身是以BCM-95™作為商標 .

±芳薑黃酮是一種主要的生物活性複合物,亦是薑黃中最強效的元素。

成份

Curcugreen™† (標準化提取自薑黃塊根含量達88%的類薑黃素‡與精油):400毫克
Curcugreen是經商標註冊的薑黃素成分,由含有類薑黃素與薑黃精油專利混合物的薑黃萃取物製成。大多數的薑黃素的生物可利用性較差,Curcugreen則提供高度的口服生物可利用性,促使身體獲取薑黃素所提供的全方位健康益處。

薑黃素是薑黃的主要活性成分。薑黃在歷史上用於保健及化妝用途,取自薑黃塊,亦被用作為染料及烹飪香料。薑黃素一直以來被用以保健及煮食。目前,科學界具有極大的興趣,對薑黃素及其潛在裨益作進一步了解。

研究證明薑黃素能支援免疫系統、認知及肝臟健康。它亦顯示出其抗氧化特性,從而保護身體免受自由基侵害。薑黃素被證實能支援穀胱甘肽本身以及其合成與代謝所需的酵素生成。2穀胱甘肽是由人體自然生成,具有抗氧化特性。

除了支援免疫系統的功能,研究顯示薑黃素能夠通過多種機制以支援體內環氧合酶-2(COX-2)與核因子-KB(NF-kB)的正常水平。核因子-KB是一種轉錄因子,即它能支援一種基因編碼的特定蛋白質的正常形成 — 特別是COX-2基因。3

薑黃素被證實有助維持神經系統健康與認知功能。薑黃素或有助促進大腦澱粉樣β蛋白(一種蛋白質分段)的健康水平。研究人員發現正常的澱粉樣β蛋白水平與神經及認知健康相關,如記憶與情緒。薑黃素的另一個神經保護特性就是促進大腦中的穀胱甘肽、超氧化物歧化酶(SOD)以及過氧化氫酵素維持正常水平,從而有助維持神經組織健康。超氧化物歧化酶(SOD)與過氧化氫酵素是一種能保護細胞的酵素。

薑黃素能支援肝臟健康及功能。薑黃素能支援肝臟中第二階段排毒酵素的正常生成。這些排毒酵素作為強效的間接抗氧化物來促進人體的天然防禦系統及其功能,有助中和有害的重金屬、毒素與污染物。例如,薑黃素通過支援穀胱甘肽合成,以支援穀胱甘肽轉移酵素的排毒功能。薑黃素亦能促進正常的肝臟組織。

†Curcugreen™是Arjuna Natural Ltd.的註冊商標。

‡類薑黃素是存在於香料薑黃中的複合物。薑黃素是其中的一種的複合物,為主要的活性成分。

西蘭花籽萃取物(4.5%硫代葡萄糖苷):223毫克
西蘭花及其他十字花科蔬菜的健康好處與其防護特性均廣為人知,並已經研證。西蘭花籽萃取物是豐富的蘿蔔硫素來源。蘿蔔硫素支援第二階段肝臟排毒酵素的正常分泌,從而促進人體對化合物與毒素的正常新陳代謝。蘿蔔硫素亦可作為強效的間接抗氧化物,促進人體的天然防禦系統及其功能 — 意味著它能支援抗氧化物的功能,直接保護身體免受氧化壓力侵害。

蘿蔔硫素能維持健康的穀胱甘肽水平。穀胱甘肽是人體最關鍵的抗氧化物之一,被研究人員視為主要抗氧化物,能保護人體免受自由基及其他毒素的侵害。穀胱甘肽還能夠回收其他的抗氧化物,並支援免疫系統健康與健康的排毒等。

芥蘭素(I3C)是十字花科蔬菜中的硫代葡萄糖苷的產物,能夠支援肥大細胞的正常形成。芥蘭素中極其重要的健康好處之一,是可促使不良細胞凋亡及抑制自由基生成。許多研究顯示,芥蘭素還具有強大的護肝功能。

硒(L-硒甲硫胺酸):100微克
L-硒甲硫胺酸提供一種具有生物可利用性形態的硒。它與蛋氨酸的輸送機制相同,是只能透過膳食獲取的9種必需氨基酸之一,比起無機形態的硒,硒甲硫胺酸的吸收效率更高。硒是一種必需礦物質,對許多人體生理過程的正常運作至關重要。這種必需元素是硒蛋白和幾種重要抗氧化物的必要成分。作為一種抗氧化物,它有助於控制自由基並減少氧化壓力。硒是穀胱甘肽過氧化物酵素(中和過氧化氫)的必需輔助因子,研究顯示它或有助於提高這種抗氧化酵素的水平。除了促進健康的穀胱甘肽水平,硒亦可促進神經系統健康以及強化免疫系統。

常見問答

甚麼是薑黃素?
薑黃素存在於香料薑黃內,常見於各種印度食物中。其化學成分不但形成了薑黃的黃色,也是其最具活性的成分。數千年以來,薑黃素在印度與亞洲其他地區被用作保健。除了提供多種健康益處之外,薑黃素還是一種強效的抗氧化物。

穀胱甘肽是甚麼,為甚麼它很重要?
穀胱甘肽是由一種由氨基酸組成的抗氧化物,並在肝臟製造。它在第二階段的排毒過程中起著非常重要的作用,有助保護人體免受毒素侵害、抵禦自由基及氧化壓力,並促進免疫系統健康。

我聽說薑黃素的生物可利用性不高。這是否代表Curcumin Extreme薑黃精華─補肝排毒配方不容易被吸收?
薑黃素的生物可利用性確實較低,而且代謝速度快 — 代表它需要一些輔助方式才能發揮最大的好處。Curcumin Extreme薑黃精華─補肝排毒配方中的Curcugreen,這是一種經臨床研究證實安全可靠的成分,具有極佳的生物可利用性,可令身體全面攝取活性薑黃素帶來的所有健康益處。

甚麼人可以使用Curcumin Extreme薑黃精華─補肝排毒配方?
任何18歲或以上人士均可食用Curcumin Extreme薑黃精華─補肝排毒配方,尤其是想要支援正常的肝臟排毒功能,幫助維持健康的穀胱甘肽水平,促進神經系統健康和強健免疫系統的人士。

如果你正在使用薄血丸(Coumadin)或其他抗血小板/抗凝血藥物,請勿食用本產品。如果你正在使用處方藥物或患有長期疾病,請在使用本產品前諮詢醫護人員。懷孕或哺乳期婦女請勿使用本產品。避免兒童誤取。貯存於陰涼、乾燥處。如果瓶蓋密封紙已開封或缺失,請勿使用。

男性和女性都能使用本產品嗎?
是的。然而,婦女在懷孕或哺乳期間不可食用本產品。如果你正在使用薄血丸(Coumadin)或其他抗血小板/抗凝血藥物,請勿食用本產品。如果你正在使用處方藥物或患有長期疾病,請在使用本產品前諮詢醫護人員。

Curcumin Extreme薑黃精華─補肝排毒配方的每天建議食用份量是多少?
每天食用一粒,可空肚或飽肚食用。

使用本產品多久才有效果? 會有怎樣的效果?
薑黃素的抗氧化益處會在第四到六週有明顯的效益。請切記,每個人的身體都有所不同。某些人可能需要更長的時間才能感受到薑黃素的益處。你會感到更好,並且整體更健康。

在使用Curcumin Extreme薑黃精華─補肝排毒配方期間,我該停用我的藥物嗎?或是我可以同時使用?
如果你正在使用薄血丸(Coumadin)或其他抗血小板/抗凝血藥物,請勿使用本產品。如果你正在使用處方藥物或患有長期疾病,請在使用本產品前諮詢醫護人員。關於你的處方藥物,你的醫生可以提供最合適的建議。懷孕或哺乳期婦女不宜食用本產品。

食用Curcumin Extreme薑黃精華─補肝排毒配方會有副作用嗎?
副作用較為少見,通常僅會有胃部輕微不適。如果你有任何疑問,請諮詢醫護人員意見。

食用Curcumin Extreme薑黃精華─補肝排毒配方有任何注意事項嗎?
如果你正在使用薄血丸(Coumadin)或其他抗血小板/抗凝血藥物,請勿使用本產品。如果你正在使用處方藥物或患有長期疾病,請在使用本產品前諮詢醫護人員。懷孕或哺乳期婦女不宜食用本產品。

Curcumin Extreme薑黃精華─補肝排毒配方含過敏原嗎?
本產品不含以下常見過敏原:大豆、小麥、麩質或奶製品。

HK.SHOP.COM 有甚麼其他產品可以配合Curcumin Extreme薑黃精華─補肝排毒配方使用呢?
由於大量的環境壓力因素會導致氧化壓力,促使多種自由基形成,我們需要一組強效的抗氧化物來保護我們身體各部份。除了Curcumin Extreme薑黃精華─補肝排毒配方以外,Isotonix OPC-3®沖飲亦是一種對身體有多種益處的抗氧化物。原花青素(OPCs)是生物類黃酮(有機的植物複合物),存在於蔬果及某種樹皮中,能提供人體卓越的營養益處。研究顯示,原花色素中和自由基的效果比維他命C與維他命E更有效。

另一種產品Prime™ Isotonix®健絡關節沖飲有助於中和炎症產物。身體的炎症反應是一個自然過程,是組成身體防禦系統重要的一環,可由多種內在及外在因素而觸發。將Prime Isotonix健絡關節沖飲加入你的日常補充品,有助減緩因衰老或日常活動造成的暫時性關節發炎症狀,同時維持健康的關節滑液含量與靈活度。

在開始加入任何營養補充品到你日常的生活之前,你應先諮詢你的醫護人員。

食用Curcumin Extreme薑黃精華─補肝排毒配方安全嗎?
Curcumin Extreme薑黃精華─補肝排毒配方安全及不含有害物質。本產品在美國製造,並經美國食品及藥物管理局檢測設備生產,符合生產規範。

†Curcugreen™是Arjuna Natural Ltd.的註冊商標。

資料來源 :
1. Arjuna Natural. (n.d.). Curcugreen. Retrieved from http://www.arjunanatural.com/Curcugreen.html.
2. Dickinson, D.A. et al. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. The FASEB Journal: 17(3):473-5. doi:10.1096/fj.02-0566fje, 2003
3. Poligone, B. and Baldwin, A. Positive and Negative Regulation of NF-κB by COX-2: Roles of Different Prostaglandins. Journal of Biological Chemistry: 276, 38658-38664. doi: 10.1074/jbc.M106599200, 2001
4. National Center for Biotechnology Information. PubChem Compound Database; CID=105024, https://pubchem.ncbi.nlm.nih.gov/compound/105024

科學

  • Aggarwal BB and Ichikawa H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle. 4(9):1201-15, 2005
  • Araujo, C. and Leon, L. Biological activities of Curcuma longa L. Memorias do Instituto Oswaldo Cruz. 96(5): 723-728, 2001.
  • Bhattacharyya, S., et al. Curcumin prevents tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction. Journal of Biological Chemistry. 282(22): 15954-15964.
  • Biswas, S., et al. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxidants and Redox Signaling. 7(1-2): 32-41, 2005.
  • Brandi, G et al. A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Research. 63(14):4028-36, 2003
  • Cheng, Y., et al. Effects of curcumin on peroxisome proliferator-activated receptor gamma expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells. Chinese Medical Journal. 120(9): 794-801, 2007.
  • Chinni, SR et al. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene. 20(23): 2927-36, 2001
  • Churchill, M., et al. Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile. Journal of Surgical Research. 89(2): 169-175, 2000.
  • Cornblatt, B., et al. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. 28(7): 1485-1490, 2007.
  • Dairam, A., et al. Curcuminoids, curcumin, and demethoxycurcumin reduce lead-induced memory deficits in male Wistar rats. Journal of Agricultural and Food Chemistry. 55(3): 1039-1044, 2007.
  • Dickinson, D., et al. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB. 17(3): 473-475, 2003.
  • Fahey, J., et al. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proceedings of the National Academy of Sciences of the United States of America. 99(11): 7610-7615, 2002.
  • Farombi, E., et al. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food and Chemical Toxicology. 46(4): 1279-1287, 2008.
  • Funk, J., et al. Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis. Journal of Natural Products. 69(3): 351-355, 2006.
  • Gao, X. and Talalay, P. Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proceedings of the National Academy of Sciences of the United States of America. 101(28): 10446-10451, 2004.
  • Garcia-Alloza, M., et al. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. Journal of Neurochemistry. 102(4): 1095-1104, 2007.
  • Hatcher, H. et al. Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences : CMLS, 65(11), 1631–1652. http://doi.org/10.1007/s00018-008-7452-4, 2008
  • Higdon, J., et al. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacological Research. 55(3): 224-236, 2007.
  • Howells, L., et al. Comparison of oxaliplatin- and curcumin-mediated antiproliferative effects in colorectal cell lines. International Journal of Cancer. 121(1): 175-183, 2007.
  • • Jagetia, G. and Aggarwal, B. “Spicing up” of the immune system by curcumin. Journal of Clinical Immunology. 27(1): 19-35, 2007.
  • Johnson, J., et al. Curcumin for chemoprevention of colon cancer. Cancer Letters. 255(2): 170-181, 2007.
  • Juge, N., et al. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cellular and Molecular Life Sciences. 64(9): 1105-1127, 2007.
  • Kaur, G., et al. Inhibition of oxidative stress and cytokine activity by curcumin in amelioration of endotoxin-induced experimental hepatoxicity in rodents. Clinical and Experimental Immunology. 145(2): 313-321, 2006.
  • Kim, G., et al. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. Journal of Immunology. 174(12): 8116-8124, 2005.
  • Kurup, V., et al. Immune response modulation by curcumin in a latex allergy model. Clinical and Molecular Allergy. 5: 1, 2007.
  • Lim, G., et al. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience. 21(21): 8370-8377, 2001.
  • Lin, J. Molecular targets of curcumin. Advances in Experimental Medicine and Biology. 595: 227-243, 2007.
  • Magalska, A., et al. Curcumin induces cell death without oligonucleosomal DNA fragmentation in quiescent and proliferating human CD8+ cells. Acta Biochimica Polonica. 53(3): 531-538, 2006.
  • Maheshwari, R., et al. Multiple biological activities of curcumin: a short review. Life Sciences. 78(18): 2081-2087, 2006.
  • Mathuria, N. and Verma, R. Ameliorative effect of curcumin on aflatoxin-induced toxicity in DNA, RNA and protein in liver and kidney of mice. Acta Poloniae Pharmaceutica. 64(6): 497-502, 2007.
  • Monograph. Curcuma longa (turmeric). Alternative Medicine Review. 6(suppl): S62-S66, 2001.
  • Morimitsu, Y., et al. A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway. Journal of Biological Chemistry. 277(5): 3456-3463, 2002.
  • Myzak, M. and Dashwood, R. Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Letters. 233(2): 208-218, 2006.
  • Myzak, M., et al. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB. 20(3): 506-508, 2006.
  • Naik, R., et al. Protection of liver cells from ethanol cytotoxicity by curcumin in liver slice culture in vitro. Journal of Ethnopharmacology. 95(1): 31-37, 2004.
  • Nanji, A., et al. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. American Journal of Physiology. 284(2): G321-G327, 2003.
  • Ng, T., et al. Curry consumption and cognitive function in the elderly. American Journal of Epidemiology. 164(9): 898-906, 2006.
  • Nishinaka, T., et al. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicology Letters. 170(3): 238-247, 2007.
  • Noyan-Ashraf, M., et al. Dietary approach to decrease aging-related CNS inflammation. Nutritional Neuroscience. 8(2): 101-110, 2005.
  • O’Connell, M. and Rushworth, S. Curcumin: potential for hepatic fibrosis therapy? British Journal of Pharmacology. 153(3): 403-405, 2007.
  • Osawa, T. Nephroprotective and hepatoprotective effects of curcuminoids. Advances in Experimental Medicine and Biology. 595: 407-423, 2007.
  • Pal, S., et al. Amelioration of immune cell number depletion and potentiation of depressed detoxification system of tumor-bearing mice by curcumin. Cancer Detection and Prevention. 29(5): 470-478, 2005.
  • Pari, L. and Amali, D. Protective role of tetrahydrocurcumin (THC) an active principle of turmeric on chloroquine induced hepatotoxicity in rats. Journal of Pharmacy and Pharmaceutical Sciences. 8(1): 115-123, 2005.
  • Perkins, S., et al. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiology, Biomarkers, and Prevention. 11(6): 535-540, 2002.
  • Rayman, MP et al. Food-chain selenium and human health: spotlight on speciation. Br J Nutr. 100(2):238-53, 2008
  • Rayman MP. Food-chain selenium and human health: emphasis on intake. Br J Nutr.100(2):254-68, 2008
  • Rayman MP. Selenium and human health. Lancet. 379(9822):1256-68, 2012 Rushworth, S., et al. Role of protein kinase C delta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochemical and Biophysical Research Communications. 341(4): 1007-1016, 2006.
  • Salvioli, S., et al. Curcumin in cell death processes: A challenge for CAM of age-related pathologies. Evidence-based Complementary and Alternative Medicine. 4(2): 181-190, 2007.
  • Scapagnini, G., et al. Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxidants and Redox Signaling. 8(3-4): 395-403, 2006.
  • Shen, G., et al. Modulation of nuclear factor E2-related factor 2-mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin. Molecular and Cancer Therapeutics. 5(1): 39-51, 2006.
  • Shen, S., et al. Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World Journal of Gastroenterology. 13(13): 1953-1961, 2007.
  • Shishodia, S., et al. Curcumin: getting back to the roots. Annals of the New York Academy of Sciences. 1056: 206-217, 2005.
  • Shu, J., et al. The study of therapeutic effects of curcumin on hepatic fibrosis and variation of correlated cytokine. Journal of Chinese Medicinal Materials. 30(11): 1421-1425, 2007.
  • Shukla, P., et al. Protective effect of curcumin against lead neurotoxicity in rat. Human and Experimental Toxicology. 22(12): 653-658, 2003.
  • Smith, T., et al. Allyl-isothiocyanate causes mitotic block, loss of cell adhesion and disrupted cytoskeletal structure in HT29 cells. Carcinogenesis. 25(8): 1409-1415, 2004.
  • Srinivasan, M., et al. Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutation Research. 611(1-2): 96-103, 2006.
  • Tang, L., et al. Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Molecular Cancer Therapeutics. 5(4): 935-944, 2006.
  • Thangapazham, R., et al. Multiple molecular targets in cancer chemoprevention by curcumin. AAPS Journal. 8(3): E443-E449, 2006.
  • Thejass, P. and Kuttan, G. Antimetastatic activity of Sulforaphane. Life Sciences. 78(26): 3043-3050, 2006.
  • Thejass, P. and Kuttan, G. Augmentation of natural killer cell and antibody-dependent cellular cytotoxicity in BALB/c mice by sulforaphane, a naturally occurring isothiocyanate from broccoli through enhanced production of cytokines IL-2 and IFN-gamma. Immunopharmacology and Immunotoxicology. 28(3): 443-457, 2006.
  • Thejass, P. and Kuttan, G. Immunomodulatory activity of Sulforaphane, a naturally occurring isothiocyanate from broccoli (Brassica oleracea). Phytomedicine. 14(7-8): 538-545, 2007.
  • Wakabayashi, N., et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proceedings of the National Academy of Sciences of the United States of America. 101(7): 2040-2045, 2004.
  • Wei, Q., et al. Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochimica et Biophysica Acta. 1760(1): 70-77, 2006.
  • Wu, A., et al. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. 197(2): 309-317, 2006.
  • Xu, Y., et al. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Research. 1122(1): 56-64, 2006.
  • Yadav, V., et al. Immunomodulatory effects of curcumin. Immunopharmacology and Immunotoxicology. 27(3): 485-497, 2005.
  • Yang, F., et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry. 280(7): 5892-5901, 2005.
  • Ye, S., et al. Effect of curcumin on the induction of glutathione S-transferases and NADP(H):quinone oxidoreductase and its possible mechanism of action. Acta Pharmaceutica Sinica. 42(4): 376-380, 2007.
  • Zhang, L., et al. Curcuminoids enhance amyloid-beta uptake by macrophages of Alzheimer’s disease patients. Journal of Alzheimer’s Disease. 10(1): 1-7, 2006.
  • Zheng, S. and Chen, A. Curcumin suppresses the expression of extracellular matrix genes in activated hepatic stellate cells by inhibiting gene expression of connective tissue growth factor. American Journal of Physiology. 290(5): G883-G893, 2006.
  • Zheng, S. and Chen, A. Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells. American Journal of Physiology. 292(1): G113-G123, 2007.
  • Zheng, S., et al. De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation. Free Radical Biology and Medicine. 43(3): 444-453, 2007.

Start typing and press Enter to search

Shopping Cart

購物車內無任何商品